توسعه‌ی یک مدل ارزیابی فازی جدید با تمرکز بر بهبود قابلیت اطمینان قضاوت شفاهی مشتریان (مطالعه موردی در حوزه بانکداری اینترنتی)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مدیریت اجرایی، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

2 استادیار گروه مدیریت کسب و کار، دانشکده اقتصاد و مدیریت، واحد شیراز، دانشگاه آزاد اسلامی، شیراز، ایران

چکیده

استفاده از مدل‌های ارزیابی فازی مبتنی بر نظرسنجی امروزه بسیار مورد توجه قرار می‌گیرد. در اغلب روش‌های توسعه یافته توجه چندانی به قابلیت اطمینان نظرات افراد شرکت کننده در نظرسنجی نشده است. در این پژوهش، جهت بهبود قابلیت اطمینان نظرات (قضاوت شفاهی) افراد یک مدل ارزیابی چند معیاره نوین فازی ارائه شده است. جهت طراحی این مدل، ابتدا روش‌های سوآرا و کوپراس در محیط فازی توسعه و با یکدیگر تلفیق شده‌اند. سپس، در راستای بهبود قابلیت اطمینان داده‌های حاصل از نظرسنجی (قضاوت شفاهی افراد) و افزایش دقت نتایج نهایی، ضمن تفاوت قائل شدن بین وزن ارزیاب‌ها (افراد شرکت کننده در نظرسنجی)، از مفهوم عدد Z ̃ استفاده شده است. به منظور تشریح فرآیند اجرایی مدل پیشنهادی، یک مطالعه‌ی موردی عملی در حوزه بانکداری اینترنتی به انجام رسیده است که طی آن کیفیت خدمات بانکداری اینترنتی مؤسسه اعتباری کوثر بر اساس شاخص‌های مبتنی بر رضایت مشتری مورد ارزیابی قرار گرفته و در نهایت، ضمن تفسیر نتایج عددی حاصل و تشریح قابلیت‌های برجسته مدل فازی پیشنهادی، نتایج و پیشنهادات مدیریتی نیز مورد بحث قرار گرفته است. رویکرد پیشنهادی در این مقاله، یک مدل تصمیم‌گیری چندمعیاره جدید فازی است که با بهبود قابلیت اطمینان قضاوت شفاهی افراد، ضمن کاهش عدم قطعیت ذاتی نهفته در مسائل ارزیابی، به بهبود قابلیت اطمینان داده‌های تصمیم‌گیری و افزایش دقت نتایج نهایی منجر خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Developing a new assessment fuzzy model by focusing on improving the reliability of customers’ individual verbal judgment (An Internet Banking case study)

نویسندگان [English]

  • Hasan Sadeghi 1
  • Fazlollah Kazemi 2
1 Department of Executive Management, Shiraz Branch, Islamic Azad University,Shiraz, Iran
2 Department of MBA, Shiraz branch, Islamic Azad University, Shiraz, Iran
چکیده [English]

Today, the use of survey-based fuzzy assessment models is very common. Most developed methods, had rarely attended to the reliability of survey participants’ opinions. This paper proposed a new fuzzy multi-criteria evaluation model for improving the reliability of individual’s opinion (verbal judgment). For this, first, SWARA and COPRAS methods are developed in a fuzzy environment. Then, Z-number concept is used to increase data reliability and accuracy of final results, while differentiating between the weight of the evaluators (people participating in the survey). To illustrate the implementation process of the proposed model, a practical case study of Internet Banking is done. This case evaluated the quality of Internet banking services of the Kosar Credit Institute based on customer satisfaction criteria. Finally, while interpreting the numerical results and describing the prominent features of the proposed fuzzy model, management results and suggestions are also discussed. The proposed approach in this paper is a new fuzzy multi-criteria decision making model that improves the reliability of individual’s verbal judgment of, while reducing the inherent uncertainty in evaluation issues. This model will improve the reliability of decision-making data and increase the accuracy of final results.

کلیدواژه‌ها [English]

  • Internet banking
  • Fuzzy SWARA
  • Z-Number
  • Fuzzy COPRAS
  • Reliability
Aliev, R. (2015). Decision Making under Z-Information. Decision and Control, 27, 275-287, doi:10.1007/978-3-319-14636-2_14.

Belanche Gracia, D., Arino, L. V. C., & Blasco, M. G. (2015). The effect of culture in forming e-loyalty intentions: A cross-cultural analysis between Argantina and Spain. BRQ Business Research Quarterly, 18(4), 275-292, doi:10.1016/j.brq.2015.02.003.

Drejeris, R.,  & Kavolynas, A. (2014). Multi-criteria Evaluation of Building Sustainability Behavior. Procedia - Social and Behavioral Sciences, 10, 502-511, doi: 10.1016/j.sbspro.2013.12.894.

Ecer, F. (2014). A hybrid banking websites quality evaluation model using AHP and COPRAS-G: a Turkey case. Technological and Economic Development of Economy, 20(4), 758-782, doi: 10.3846/20294913.2014.915596.

Guerrero, M.M., Egea, J.M.O., & González, M.V.R. (2007). Application of the latent class regression methodology to the analysis of Internet use for banking transactions in the European Union. Journal of Business Research, 60(2), 137-145, doi:10.1016/j.jbusres.2006.10.012.

Hanafizadeh, P., Keating, B.W., & Khedmatgozar, H.R. (2013). A systematic review of Internet banking adoption. Telematics and Informatics, 31(3), 492-510, doi:10.1016/j.tele.2013.04.003.

Hashemkhani Zolfani, S., & Bahrami, M. (2014).  Investment prioritizing in high tech industries based on SWARA-COPRAS approach. Technological and Economic Development of Economy, 20(3), 534-553, doi:10.3846/20294913.2014.881435.

Heidary, A., Emami, A., Eskandaripour, S., Hassani, H.A., Hasanlu, H., & Shahbazi, M. (2011). Effect of exercise on the level of violence (aggression) in the selected male students of wrestling and karate in Zanjan-Iran. Procedia-Social and Behavioral Sciences, 30, 2416-2417, doi:10.1016/j.sbspro.2011.10.471.

Hsieh, T.Y., Lu, S.T., & Tzeng, G.H. (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. International Journal of Project Management, 22(7), 573-584, doi:10.1016/j.ijproman.2004.01.002.

Hu, Y. C., & Liao, P. C. (2011). Finding critical criteria of evaluating electronic service quality of Internet banking using fuzzy multiple-criteria decision making. Applied Soft Computing, 11(4), 3764-3770, doi: 10.1016/j.asoc.2011.02.008.

Jham, V. (2016). Customer Satisfaction with Internet Banking: Exploring the Mediating Role of Trust. Journal of Emerging in Economics and Management Science (JETEMS), 7(2), 75-87.

Kang, B. Y., Wei, D., Li, Y., & Deng, Y. (2012). A Method of converting Z-number to classical fuzzy number. Journal of Information & Computational Siense, 9(3), 703-709.

Kang, B., Deng, Y., & Sadiq, R. (2017). Total utility of Z-number. Applied Intelligence, Article in Press, doi:10.1007/s10489-017-1001-5.

Karabasevic, D., Zavadskas, E.K., Turskis, Z., & Stanujkic, D. (2016). The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. Informatica, 27(1), 49-65.

Keršuliene V., Zavadskas E.K., & Turskis Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11(2), 243–258, doi:10.3846/jbem.2010.12.

Laukkanen, P., Sinkkonen, S., & Laukkanen, T. (2008). Consumer resistance to internet banking: postponers, opponents and rejectors. International Journal of Bank Marketing, 26(6), 440-455, doi:10.1108/02652320810902451.

Liang, CC. & Nguyen, N.L. (2017). Marketing strategy of internet-banking service based on perceptions of service quality in Vietnam. Electronic Commerce Research, 1-18, doi:10.1007/s10660-017-9261-z.

Manpreet, K. (2015). Influential Factors of Service Quality Affecting E-loyalty in E-Retailing. International Journal of Advance Research in Computer Science and Management Studies, 3(12), 34-41.

Manpreet, K. (2015). Influential Factors of Service Quality Affecting E-loyalty in E-Retailing. International Journal of Advance Research in Computer Science and Management Studies, 3(12), 34-41.

Massanet, S., Riera, J. V., & Torrens, J. (2017). On the Aggregation of Zadeh’s Z-Numbers Based on Discrete Fuzzy Numbers. Aggregation Functions in Theory and in Practice, Advances in Intelligent Systems and Computing, 581, 118-129, doi:10.1007/978-3-319-59306-7_1.

Mazaheri Asad, M., Mohajerani, N. S., & Nourseresh, M. (2016). Prioritizing Factors Affecting Customer Satisfaction in the Internet Banking System Based on Cause and Effect Relationships. Procedia Economics and Finance, 36, 210-219, doi:10.1016/S2212-5671(16)30032-6.

Moodley, D., & Govender, I. (2016). Factors influencing academic use of internet banking services: An empirical study. African Journal of Science, Technology, Innovation and Development, 8(1), 43-51, doi:10.1080/20421338.2015.1128043.

Nguyen, H.T., Dawal, S.Z., Nukman, Y., Aoyama, H., & Case, K. (2016). An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation. PLoS ONE 10(9): e0133599, doi:10.1371/journal.pone.0133599.

Oruç, Ö. E., & Tatar, Ç. (2017). An investigation of factors that affect internet banking usage based on structural equation modeling. Computers in Human Behavior, 66, 232-235.

Parasuraman, A., Zeithaml, V.A, Valerie A., & Berry, L.L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality. Journal of Retailing, 64, 12-40.

Rambures, D.D., Duenas, F.E. (2017). Fast Growing Internet Banking and Finance. China’s Financial System, Palgrave Macmillan, Cham, 91-100, doi:10.1007/978-3-319-40451-6_7.

Rathi, K., & Balamohan, S. (2016). A Mathematical Model for Subjective Evaluation of Alternatives in Fuzzy Multi-Criteria Group Decision Making Using COPRAS Method. International Journal of Fuzzy Systems, 1-10, doi: 10.1007/s40815-016-0256-z.

Salari, M., Bagherpour,M., & Wang,J. (2014). A novel earned value management model using Z-number.International Journal of Applied Decision Sciences, 7(1), 97-119, doi: 10.1504/IJADS.2014.058037.

Salimon, M. G., Zien, Y. R., Mokhtar, M., & Sanuri, S. (2016). The influence of E-Satisfaction, E-Trust and Hedonic Motivation on the Adoption of E-banking and its Determinants in Nigeria: A Pilot Study. Mediterranean Journal of Social Science, 7(1), 54-63, doi:10.5901/mjss.2016.v7n1p54.

Serrai, W., Abdelli, A., Mokdad, L., & Hammal, Y. (2017). Towards an efficient and a more accurate web service selection using MCDM methods. Journal of Computational Science, Article In Press, doi:10.1016/j.jocs.2017.05.024.

Sharma, S.K., & Govindaluri, S.M. (2014). Internet banking adoption in India. Journal of Indian Business Research, 6(22), 155-169, doi:10.1108/JIBR-02-2013-0013.

Singh, S., & Sirohi, N.J. (2014). Internet banking services as tool of CRM: a study of customer satisfaction in the National Capital Region, Delhi. Int. J. Electronic Customer Relationship Management, 8(1/2/3),101-118, doi:10.1504/IJECRM.2014.066888. 

Stoica, O., Mehdian, S., & Sargu, A. (2015). The Impact of Internet Banking on the Performance of Romanian Banks: DEA and PCA Approach. Procedia Economics and Finance, 20, 610-622, doi: 10.1016/S2212-5671(15)00115-X.

Vahdani, B., Mousavi, S.M., Hashemi, H., Mousakhani, M., & Tavakkoli-Moghaddam, R. (2013). A new compromise solution method for fuzzy group decision-making problems with an application to the contractor selection. Engineering Applications of Artificial Intelligence, 26(2), 779-788, doi:10.1016/j.engappai.2012.11.005.

Waltz C.F. (1983). Bausell RB.Nursing research: Design, Statistics and Computer Analysis. 2nd ed. Philadelphia: FA Davis Company.

Yadav, R., Chauhan, V., & Pathak, G.S. (2015). Intention to adopt internet banking in an emerging economy: a perspective of Indian youth. International Journal of Bank Marketing, 33(4), 530-544, doi:10.1108/IJBM-06-2014-0075.

Yager, R.R. (2012). On Z-valuations using Zadeh's Z-numbers. International Journal of Intelligent Systems, 27(3), 259-278.

Zadeh, L. A. (2011). A note on 𝑍-numbers. Information Sciences, 181(14), 2923–2932.

Zavadskas, E.K., Kaklauskas, A., & Sarka, V. (1994). The new method of multicriteria complex proportional assessment of projects. Technological and Economic Development of Economy, 1, 131-139.